organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 2,3-dihydrothieno[3,4-b]-1,4dioxine-5,7-dicarboxylate

Katsuhiko Ono,^a* Masaaki Tomura^b and Katsuhiro Saito^a

^aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and ^bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

Received 22 December 2007; accepted 10 January 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.070; wR factor = 0.177; data-to-parameter ratio = 15.0.

The title compound, C₁₂H₁₄O₆S, is a dicarboxylic acid diethyl ester of 3,4-ethylenedioxythiophene, which is a component of electrically conductive poly(3,4-ethylenedioxythiophene) (PEDOT). The ethylene group is disordered over two sites with occupancy factors 0.64 and 0.36. Both the carbonyl groups are coplanar with the thiophene ring. The molecules form centrosymmetric dimers with an $R_2^2(12)$ coupling by intermolecular C–H···O hydrogen bonds [3.333 (5) Å] at the ethoxycarbonyl groups. The dimer units are arranged to form a ribbon-like molecular sheet.

Related literature

The title compound was synthesized as a precursor of 3,4ethylenedioxythiophene, which is polymerized to afford PEDOT (Groenendaal et al., 2000; Pei et al., 1994). Synthetic methods for the title compound have been reported by: Coffey et al. (1996); Kumar et al. (1998); Zong et al. (2002); Caras-Quintero & Bäuerle (2002). For literature on related molecular structures, including a 3,4-ethylenedioxythiophene ring system, see: Sotzing et al. (1996); Abboud et al. (1998); Kumar et al. (1998). For related literature, see: Bernstein et al. (1995); Allen et al. (1987).

c = 17.351 (3) Å

 $\alpha = 94.294(7)^{\circ}$

 $\beta = 92.024 \ (9)^{\circ}$

 $\gamma = 105.641$ (9)

V = 651.4 (2) Å²

Experimental

Crystal data

$C_{12}H_{14}O_6S$	
$M_r = 286.30$	
Triclinic, P1	
a = 4.6805 (8) Å	
b = 8.3673 (17) Å	

Z = 2Mo $K\alpha$ radiation $\mu = 0.27 \text{ mm}^{-1}$

Data collection

Rigaku/MSC Mercury CCD	2899 independent reflections
diffractometer	2300 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.036$
5181 measured reflections	

T = 295 (1) K $0.60 \times 0.10 \times 0.08 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.069$ 193 parameters $wR(F^2) = 0.176$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.55 \text{ e} \text{ Å}^{-2}$ S = 1.11 $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$ 2899 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9B\cdotsO3^{i}$ $C9-H9A\cdotsO3^{ii}$ $C6B-H6B1\cdotsO5^{iii}$	0.96	2.66	3.333 (5)	127
	0.96	2.62	3.523 (7)	157
	0.97	2.68	3.233 (12)	117

Symmetry codes: (i) -x + 3, -y, -z; (ii) -x + 2, -y, -z; (iii) x + 1, y + 1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

This work was supported by a Grant-in-Aid (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2368)

References

- Abboud, K. A., Irvin, D. J. & Reynolds, J. R. (1998). Acta Cryst. C54, 1994-1997.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Caras-Ouintero, D. & Bäuerle, P. (2002). Chem. Commun. pp. 2690-2691.
- Coffey, M., McKellar, B. R., Reinhardt, B. A., Nijakowski, T. & Feld, W. A. (1996). Synth. Commun. 26, 2205-2212.
- Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. (2000). Adv. Mater. 12, 481-494.
- Kumar, A., Welsh, D. M., Morvant, M. C., Piroux, F., Abboud, K. A. & Reynolds, J. R. (1998). Chem. Mater. 10, 896-902.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Pei, Q., Zuccarello, G., Ahlskog, M. & Inganäs, O. (1994). Polymer, 35, 1347-1351.
- Rigaku/MSC (2001). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sotzing, G. A., Reynolds, J. R. & Steel, P. J. (1996). Chem. Mater. 8, 882-889. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zong, K., Madrigal, L., Groenendaal, L. & Reynolds, J. R. (2002). Chem. Commun. pp. 2498-2499.

supplementary materials

Acta Cryst. (2008). E64, o468 [doi:10.1107/S1600536808000937]

Diethyl 2,3-dihydrothieno[3,4-b]-1,4-dioxine-5,7-dicarboxylate

K. Ono, M. Tomura and K. Saito

Comment

The title compound (I) has been prepared as a precursor of 3,4-ethylenedioxythiophene (Coffey *et al.*, 1996; Kumar *et al.*, 1998; Zong *et al.*, 2002; Caras-Quintero & Bäuerle, 2002), which is polymerized by oxidizing agents to afford poly(3,4-ethylenedioxythiophene) (PEDOT). PEDOT shows high electrical conductivities and high stabilities in the oxidized states. Furthermore, the thin films of oxidized PEDOT are almost transparent. Therefore, these are used for organic electrodes in the study of electronic devices (Groenendaal *et al.*, 2000; Pei *et al.*, 1994). With regard to the hole-transporting abilities, the arrangement of 3,4-ethylenedioxythiophene units in film has attracted considerable attention. A few crystal structures including a 3,4-ethylenedioxythiophene ring system were reported (Sotzing *et al.*, 1996; Abboud *et al.*, 1998; Kumar *et al.*, 1998). In this paper, we report the crystal structure of compound (I) that is a dicarboxylic acid diethyl ester of 3,4-ethylenedioxythiophene.

The compound (I) crystallizes in the *P*T space group. The molecular structure is shown in Fig. 1. The ethylene moiety is disordered over two sites (O1—C5A—C6A—O2 and O1—C5B—C6B—O2) with occupancies of 0.36:0.64. The bond lengths and angles are all within expected ranges (Allen *et al.*, 1987). Both the carbonyl moieties are planar to the thiophene ring. The molecules form a centrosymmetric dimer with a graph-set motif (Bernstein *et al.*, 1995) of $R_2^2(12)$ by intermolecular C–H…O hydrogen bonds at the ethoxycarbonyl groups [C9–H9B…O3(–x + 3, –y, –z): 3.333 (5) Å]. The dimer units are arranged to form a ribbon-like molecular sheet along the *b* axis, as shown in Fig. 2. The ribbon-like molecular sheets stack to form a layer structure (Fig. 3).

Experimental

The title compound (I) was prepared as follows: A solution of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate (3.12 g, 12 mmol) and caesium fluoride (7.26 g, 48 mmol) in dry acetonitrile (200 ml) was stirred for 1 h under nitrogen. After addition of a solution of ethylene di(*p*-toluenesulfonate) (5.55 g, 15 mmol) in dry acetonitrile (100 ml), the reaction mixture was refluxed for 48 h. The reaction mixture was filtered and the precipitate was washed with acetonitrile. The filtrate was concentrated and the residue was chromatographed on alumina gel (CH₂Cl₂) and silica gel (CH₂Cl₂) to afford the compound of (I) (2.38 g, 69%) as colorless needles. Physical data for (I): m.p. 424–425 K; IR (KBr, cm⁻¹) 2998, 1698, 1454, 1377, 1302, 1098; ¹H NMR (CDCl₃, δ p.p.m): 1.37 (t, J = 7.1 Hz, 6H), 4.35 (q, J = 7.1 Hz, 4H), 4.40 (s, 4H); ¹³C NMR (CDCl₃, δ p.p.m): 14.2, 61.3, 64.7, 111.8, 144.9, 160.7; MS (EI): m/z 286 (M^+), 241, 213, 169. Anal. Calcd for C₁₂H₁₄O₆S: C, 50.34; H, 4.93. Found: C, 50.50; H, 4.96. Colorless crystals of (I) suitable for X-ray analysis were obtained from a methanol solution.

Refinement

All the H atoms were placed in geometrically calculated positions, with C—H = 0.97 (methylene) and 0.96 (methyl) Å and $U_{iso}(H) = 1.2U_{eq}(C)$ (methylene) and $1.5U_{eq}(C)$ (methyl), and refined using a riding model.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii. The disordered atoms (C5B and C6B) are omitted for clarity.

Fig. 2. The packing diagram of (I), ribbon-like molecular sheet.

Fig. 3. The packing diagram of (I), packing mode of molecular sheets.

Diethyl 2,3-dihydrothieno[3,4-b]-1,4-dioxine-5,7-dicarboxylate

Crystal data	
C ₁₂ H ₁₄ O ₆ S	Z = 2
$M_r = 286.30$	$F_{000} = 300$
Triclinic, PI	$D_{\rm x} = 1.460 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
a = 4.6805 (8) Å	Cell parameters from 1654 reflections
<i>b</i> = 8.3673 (17) Å	$\theta = 3.3 - 27.5^{\circ}$
c = 17.351 (3) Å	$\mu = 0.27 \text{ mm}^{-1}$
$\alpha = 94.294 \ (7)^{\circ}$	T = 295 (1) K
$\beta = 92.024 \ (9)^{\circ}$	Plate, colorless
$\gamma = 105.641 \ (9)^{\circ}$	$0.60\times0.10\times0.08~mm$
$V = 651.4 (2) \text{ Å}^3$	

Data collection

Rigaku/MSC Mercury CCD diffractometer	2300 reflections with $I > 2\sigma(I)$
Monochromator: Graphite Monochromator	$R_{\rm int} = 0.036$
Detector resolution: 14.6199 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 295(1) K	$\theta_{\min} = 3.3^{\circ}$
φ and ω scans	$h = -4 \rightarrow 6$
Absorption correction: none	$k = -10 \rightarrow 10$
5181 measured reflections	$l = -22 \rightarrow 19$
2899 independent reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.069$	H-atom parameters constrained
$wR(F^2) = 0.176$	$w = 1/[\sigma^2(F_o^2) + (0.0793P)^2 + 0.337P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{max} < 0.001$
2899 reflections	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
193 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The methylene carbon atoms and the associated hydrogen atoms of the dioxine ring are disordered over two sites (O1-C5A-C6A-O2 and O1-C5B-C6B-O2) with occupancies of 0.36 (2):0.64 (2). The values were determined by refining site occupancies.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.86744 (17)	0.05411 (9)	0.23931 (5)	0.0487 (3)	
01	1.1659 (5)	0.5120 (3)	0.18957 (13)	0.0547 (6)	
O2	0.7713 (5)	0.4829 (2)	0.31477 (12)	0.0501 (5)	
O3	1.2360 (6)	0.0234 (3)	0.11029 (18)	0.0783 (8)	
O4	1.4165 (6)	0.2967 (3)	0.09719 (14)	0.0649 (7)	
O5	0.4735 (5)	-0.0297 (3)	0.36729 (15)	0.0632 (6)	
O6	0.4318 (4)	0.2289 (3)	0.39704 (12)	0.0491 (5)	
C1	1.0739 (6)	0.2137 (4)	0.19066 (17)	0.0430 (6)	
C2	1.0364 (6)	0.3648 (3)	0.21764 (16)	0.0400 (6)	
C3	0.8393 (6)	0.3508 (3)	0.27903 (15)	0.0377 (6)	
C4	0.7311 (6)	0.1889 (3)	0.29702 (16)	0.0399 (6)	
C5A	1.162 (5)	0.6525 (14)	0.2449 (14)	0.062 (5)	0.36 (2)
H5A1	1.2257	0.7562	0.2207	0.074*	0.36 (2)
H5A2	1.2966	0.6576	0.2893	0.074*	0.36 (2)
C6A	0.855 (5)	0.629 (2)	0.2697 (13)	0.059 (4)	0.36 (2)
H6A1	0.8417	0.7271	0.3011	0.070*	0.36 (2)
H6A2	0.7183	0.6125	0.2246	0.070*	0.36 (2)
C5B	1.018 (4)	0.6382 (11)	0.2131 (7)	0.065 (3)	0.64 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H5B1	0.8276	0.6153	0.1843	0.078*	0.64 (2)
H5B2	1.1379	0.7469	0.2017	0.078*	0.64 (2)
C6B	0.971 (4)	0.6381 (10)	0.2987 (7)	0.063 (3)	0.64 (2)
H6B1	1.1603	0.6543	0.3272	0.076*	0.64 (2)
H6B2	0.8898	0.7292	0.3153	0.076*	0.64 (2)
C7	1.2491 (7)	0.1675 (4)	0.12851 (19)	0.0517 (7)	
C8	1.5944 (10)	0.2624 (6)	0.0335 (2)	0.0806 (12)	
H8A	1.7836	0.3470	0.0367	0.097*	
H8B	1.6335	0.1552	0.0378	0.097*	
C9	1.4402 (13)	0.2613 (7)	-0.0398 (3)	0.1016 (16)	
H9A	1.2575	0.1739	-0.0439	0.152*	
H9B	1.5623	0.2426	-0.0809	0.152*	
H9C	1.3978	0.3666	-0.0435	0.152*	
C10	0.5316 (6)	0.1166 (3)	0.35600 (17)	0.0444 (6)	
C11	0.2365 (7)	0.1649 (4)	0.45733 (19)	0.0571 (8)	
H11A	0.3405	0.1178	0.4951	0.069*	
H11B	0.0649	0.0783	0.4352	0.069*	
C12	0.1406 (9)	0.3054 (5)	0.4950 (2)	0.0747 (11)	
H12A	0.3081	0.3833	0.5227	0.112*	
H12B	-0.0094	0.2637	0.5303	0.112*	
H12C	0.0612	0.3602	0.4562	0.112*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0565 (5)	0.0320 (4)	0.0588 (5)	0.0137 (3)	0.0039 (3)	0.0041 (3)
01	0.0743 (14)	0.0356 (11)	0.0540 (13)	0.0104 (10)	0.0276 (10)	0.0088 (9)
O2	0.0703 (13)	0.0307 (10)	0.0490 (12)	0.0103 (9)	0.0232 (10)	0.0043 (8)
03	0.0888 (18)	0.0575 (15)	0.095 (2)	0.0335 (14)	0.0233 (15)	-0.0121 (14)
O4	0.0793 (16)	0.0678 (16)	0.0562 (14)	0.0309 (13)	0.0280 (12)	0.0075 (12)
O5	0.0707 (14)	0.0373 (12)	0.0790 (17)	0.0050 (10)	0.0115 (12)	0.0213 (11)
O6	0.0515 (11)	0.0418 (11)	0.0513 (12)	0.0041 (9)	0.0154 (9)	0.0127 (9)
C1	0.0454 (15)	0.0401 (15)	0.0445 (16)	0.0144 (12)	0.0023 (12)	0.0004 (12)
C2	0.0462 (14)	0.0328 (13)	0.0396 (14)	0.0079 (11)	0.0048 (11)	0.0039 (11)
C3	0.0421 (13)	0.0317 (13)	0.0379 (14)	0.0079 (10)	0.0030 (10)	0.0028 (11)
C4	0.0429 (14)	0.0313 (13)	0.0444 (15)	0.0080 (11)	0.0017 (11)	0.0049 (11)
C5A	0.089 (10)	0.021 (4)	0.066 (9)	0.000 (5)	0.024 (7)	-0.007 (5)
C6A	0.089 (11)	0.029 (5)	0.059 (10)	0.016 (6)	0.017 (7)	0.004 (6)
C5B	0.109 (8)	0.036 (3)	0.056 (5)	0.023 (4)	0.038 (5)	0.013 (3)
C6B	0.100 (7)	0.026 (3)	0.055 (5)	0.002 (4)	0.036 (4)	0.004 (3)
C7	0.0530 (17)	0.0508 (18)	0.0554 (18)	0.0238 (14)	0.0030 (14)	-0.0049 (15)
C8	0.082 (3)	0.106 (3)	0.068 (3)	0.047 (2)	0.028 (2)	0.005 (2)
C9	0.154 (5)	0.099 (4)	0.071 (3)	0.066 (3)	0.027 (3)	0.006 (3)
C10	0.0441 (14)	0.0361 (14)	0.0488 (16)	0.0014 (11)	0.0009 (12)	0.0122 (12)
C11	0.0505 (17)	0.064 (2)	0.0530 (19)	0.0031 (15)	0.0139 (14)	0.0208 (16)
C12	0.073 (2)	0.079 (3)	0.062 (2)	0.003 (2)	0.0216 (18)	0.000 (2)

Geometric parameters (Å, °)

S1—C4	1.716 (3)	С5А—Н5А2	0.9700
S1—C1	1.720 (3)	C6A—H6A1	0.9700
O1—C2	1.352 (3)	С6А—Н6А2	0.9700
O1—C5B	1.453 (8)	C5B—C6B	1.508 (18)
O1—C5A	1.466 (13)	C5B—H5B1	0.9700
O2—C3	1.345 (3)	C5B—H5B2	0.9700
O2—C6B	1.435 (9)	C6B—H6B1	0.9700
O2—C6A	1.468 (16)	C6B—H6B2	0.9700
O3—C7	1.207 (4)	C8—C9	1.439 (6)
O4—C7	1.319 (4)	C8—H8A	0.9700
O4—C8	1.463 (4)	С8—Н8В	0.9700
O5—C10	1.213 (3)	С9—Н9А	0.9600
O6—C10	1.329 (4)	С9—Н9В	0.9600
O6—C11	1.451 (3)	С9—Н9С	0.9600
C1—C2	1.373 (4)	C11—C12	1.483 (5)
C1—C7	1.468 (4)	C11—H11A	0.9700
C2—C3	1.425 (4)	C11—H11B	0.9700
C3—C4	1.376 (4)	C12—H12A	0.9600
C4—C10	1.463 (4)	C12—H12B	0.9600
C5A—C6A	1.48 (3)	C12—H12C	0.9600
C5A—H5A1	0.9700		
C4—S1—C1	91.98 (13)	H5B1—C5B—H5B2	108.2
C2—O1—C5B	111.5 (4)	O2—C6B—C5B	110.0 (11)
C2—O1—C5A	111.2 (6)	O2—C6B—H6B1	109.7
C5B	33.1 (6)	C5B—C6B—H6B1	109.7
C3—O2—C6B	112.4 (4)	O2—C6B—H6B2	109.7
C3—O2—C6A	111.3 (7)	С5В—С6В—Н6В2	109.7
C6B—O2—C6A	28.4 (6)	H6B1—C6B—H6B2	108.2
C7—O4—C8	117.3 (3)	O3—C7—O4	125.4 (3)
C10—O6—C11	115.5 (2)	O3—C7—C1	121.2 (3)
C2—C1—C7	131.7 (3)	O4—C7—C1	113.4 (3)
C2—C1—S1	111.6 (2)	C9—C8—O4	110.4 (3)
C7—C1—S1	116.7 (2)	С9—С8—Н8А	109.6
O1—C2—C1	125.0 (3)	O4—C8—H8A	109.6
O1—C2—C3	122.6 (2)	С9—С8—Н8В	109.6
C1—C2—C3	112.4 (2)	O4—C8—H8B	109.6
O2—C3—C4	124.8 (2)	H8A—C8—H8B	108.1
O2—C3—C2	122.8 (2)	С8—С9—Н9А	109.5
C4—C3—C2	112.4 (2)	С8—С9—Н9В	109.5
C3—C4—C10	131.5 (3)	Н9А—С9—Н9В	109.5
C3—C4—S1	111.6 (2)	С8—С9—Н9С	109.5
C10—C4—S1	116.8 (2)	Н9А—С9—Н9С	109.5
O1—C5A—C6A	108.4 (18)	Н9В—С9—Н9С	109.5
O1C5AH5A1	110.0	O5—C10—O6	124.2 (3)
C6A—C5A—H5A1	110.0	O5—C10—C4	122.8 (3)
O1—C5A—H5A2	110.0	O6—C10—C4	112.9 (2)

supplementary materials

С6А—С5А—Н5А2	110.0	O6-C11-C12	107.9 (3)
H5A1—C5A—H5A2	108.4	O6—C11—H11A	110.1
O2—C6A—C5A	110.1 (18)	C12—C11—H11A	110.1
O2—C6A—H6A1	109.6	O6—C11—H11B	110.1
C5A—C6A—H6A1	109.6	C12—C11—H11B	110.1
O2—C6A—H6A2	109.6	H11A—C11—H11B	108.4
С5А—С6А—Н6А2	109.6	C11—C12—H12A	109.5
H6A1—C6A—H6A2	108.2	C11—C12—H12B	109.5
O1C5BC6B	109.7 (11)	H12A—C12—H12B	109.5
O1—C5B—H5B1	109.7	C11—C12—H12C	109.5
C6B—C5B—H5B1	109.7	H12A—C12—H12C	109.5
O1C5BH5B2	109.7	H12B-C12-H12C	109.5
C6B—C5B—H5B2	109.7		
C4—S1—C1—C2	-0.5 (2)	C2—O1—C5A—C6A	-50 (3)
C4—S1—C1—C7	-179.3 (2)	C5B—O1—C5A—C6A	46.7 (17)
C5B-O1-C2-C1	162.8 (8)	C3—O2—C6A—C5A	-48 (2)
C5A—O1—C2—C1	-161.5 (13)	C6B—O2—C6A—C5A	50 (2)
C5B—O1—C2—C3	-16.3 (9)	O1—C5A—C6A—O2	67 (3)
C5A—O1—C2—C3	19.4 (13)	C2	47.5 (16)
C7—C1—C2—O1	-0.2 (5)	C5A—O1—C5B—C6B	-48.7 (13)
S1—C1—C2—O1	-178.7 (2)	C3—O2—C6B—C5B	46.3 (17)
C7—C1—C2—C3	179.0 (3)	C6A—O2—C6B—C5B	-47.3 (18)
S1—C1—C2—C3	0.5 (3)	O1—C5B—C6B—O2	-65 (2)
C6B—O2—C3—C4	164.7 (8)	C8—O4—C7—O3	1.9 (5)
C6A—O2—C3—C4	-164.7 (11)	C8—O4—C7—C1	-178.7 (3)
C6B—O2—C3—C2	-14.9 (9)	C2—C1—C7—O3	-174.9 (3)
C6A—O2—C3—C2	15.7 (11)	S1—C1—C7—O3	3.5 (4)
O1—C2—C3—O2	-1.3 (4)	C2—C1—C7—O4	5.7 (5)
C1—C2—C3—O2	179.5 (2)	S1—C1—C7—O4	-175.8 (2)
O1—C2—C3—C4	179.0 (3)	C7—O4—C8—C9	95.4 (4)
C1—C2—C3—C4	-0.2 (4)	C11—O6—C10—O5	-1.4 (4)
O2—C3—C4—C10	-1.2 (5)	C11—O6—C10—C4	-179.1 (2)
C2—C3—C4—C10	178.4 (3)	C3—C4—C10—O5	-175.0 (3)
O2—C3—C4—S1	-179.9 (2)	S1—C4—C10—O5	3.6 (4)
C2—C3—C4—S1	-0.2 (3)	C3—C4—C10—O6	2.7 (5)
C1—S1—C4—C3	0.4 (2)	S1—C4—C10—O6	-178.76 (18)
C1—S1—C4—C10	-178.4 (2)	C10—O6—C11—C12	-178.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$		
C9—H9B···O3 ⁱ	0.96	2.66	3.333 (5)	127		
C9—H9A···O3 ⁱⁱ	0.96	2.62	3.523 (7)	157		
C6B—H6B1···O5 ⁱⁱⁱ	0.97	2.68	3.233 (12)	117		
Symmetry codes: (i) $-x+3$, $-y$, $-z$; (ii) $-x+2$, $-y$, $-z$; (iii) $x+1$, $y+1$, z .						

sup-6

Fig. 1

Fig. 2

Fig. 3